

TDA Progress Report 42-126 August 15, 1996

Automated Downlink Analysis for the
Deep Space Network

D. Watola
Communications Systems and Research Section

J. B. Hampshire II
Carnegie–Mellon University, Pittsburgh, Pennsylvania

The downlink analyzer (DLA) is a hybrid learning and monitoring system com-
bining classical signal-processing and connectionist (i.e., neural network) pattern
classification. It learns to detect and diagnose anomalous operations in the downlink
portion of the Deep Space Network, NASA’s communications link to all unmanned
spacecraft. To meet its learning and monitoring objectives, the DLA must process
data sequences gathered from throughout the downlink. Many sequences have low
signal-to-noise ratios, and the sample rates for different information sources vary
widely. This article describes the technologies employed by the DLA, focusing on
aspects that are novel. In the process of learning to date, the DLA has discovered a
previously unknown downlink failure mode, providing the first direct evidence that
it can teach human engineers, scientists, and operators subtle but important factors
that lead to the loss of scientific data.

I. Introduction

The Jet Propulsion Laboratory operates the Deep Space Network (DSN), NASA’s communication link
to all unmanned spacecraft operating in and beyond the known planetary limits of the solar system. A
typical DSN deep-space downlink is expected to recover telemetry from a spacecraft that is billions of
kilometers from Earth and emitting fewer than 20 W—less than 1/25,000 of the power output from a
typical commercial radio station. Consequently, the burden on the terrestrial antenna, radio-frequency
(RF) amplifiers, demodulators, decoders, etc., is such that they must operate near physical and theoretical
limits; the incoming signal is faint enough that even small deviations from nominal specifications can result
in a complete loss of telemetry. Loss of telemetry means loss of scientific data, with a commensurate
reduction in the total information yielded by a mission. Consequently, there is a strong incentive for
JPL/NASA to develop a fast and effective means of diagnosing and correcting DSN anomalies.

The complexity of the task and volume of data are both so large that humans frequently cannot
diagnose downlink faults in real time. As NASA missions become more demanding, the inadequacy
of human abilities to maintain reliable communications is increasingly apparent. This realization has
spawned the Downlink Analyzer (DLA) Task, a research project with the following three fundamental
objectives:

1

(1) Provide automated real-time detection and diagnosis of anomalous downlink operations.

(2) Learn heretofore unknown downlink failure modes without human intervention.

(3) Provide statistical analysis tools to downlink operators, engineers, and scientists for
further exploration of any autonomously discovered relationships.

Meeting these objectives entails monitoring signals that originate throughout the downlink. Some
such signals possess very low signal-to-noise ratios. Sampling rates also vary widely among the myriad
data sources. The situation can be further complicated by data subjected to operations invalidating
the standard assumptions associated with traditional signal processing; examples include nonuniform
sampling, undersampling with aliasing, and nonlinear (e.g., median) filtering. Thus, the problem may
not be amenable to purely classical methods.

The downlink analyzer (DLA) is a tool for performing model-based fault diagnosis using a nonpara-
metric empirical model. It achieves its goals using a combination of classical signal processing with a
robust connectionist (i.e., neural network) pattern classifier. Though it is targeted to fault identification
applications in Deep Space Network downlink subsystems, its principles are applicable to a broad class
of statistical pattern recognition and anomaly isolation problems.

This article describes the first complete implementation of the DLA and some of the techniques it
employs in order to learn and subsequently diagnose downlink failure modes. In particular, it focuses
on technical aspects that are relatively novel. The exposition is divided into seven major parts. The
first, Section I, is this introductory segment. Section II describes the overall operation of the downlink
analyzer at a high level. Sections III, IV, and V respectively detail the three major subsystems comprising
the implementation: the front end or feature extractor that performs fault detection, the neural network
responsible for system and fault modeling, and the diagnostic procedure that isolates sources of anomalies.
Section VI supplies a practical example of the entire system at work with experimental data. Finally,
Section VII concludes the article with a brief summary.

II. System Overview

A block diagram depicting the high-level components and subsystems of the DLA is given in Fig. 1.
Raw time series data, usually comprising several sequences of monitor data from a DSN monitor and
control subsystem, enter the system at the left of the figure. A very small proportion of these time series
represent observable health metrics, or statistics that are strongly correlated with the “health state” of
the downlink. The remainder are causal factors characterizing the operation of a downlink subsystem or
component thereof. Only one restriction is placed on the content of this data: for each system subject
to fault diagnosis, the data must be partitionable into a single principal health metric, h, and a set of
relevant causal factors, {ci}. There are no other constraints on the nature or content of the inputs, which
need not even be synchronously or uniformly sampled.

The principal health metric is selected such that a simple thresholding function, Ωh(h), can be for-
mulated to yield the empirical health state of the system, Ωh. Any number of health classifications can
be accommodated, but the DLA posits only two and adopts the convention that Ωh = Ω1 denotes the
GOOD or healthy state while Ωh = Ω0 indicates a BAD or anomalous condition. Generally, the empiri-
cally derived Ωh is taken to be equal to the actual system health state Ω even though h is invariably a
sample from a stochastic process subject to underlying random process noise, measurement noise, and
time delays. Hence, the true mapping from h to Ω is characterized by a set of a posteriori probabilities
{P (Ωi|h)}, and Ωh is only an estimate of Ω. For a principal health metric that is frequently updated and
estimated with high statistical confidence, the simplification proves viable.

2

Fig. 1. The downlink analyzer.

R
E

S
A

M
P

LE
R

THRESHOLD

FEATURE
EXTRACTOR

Ω h

GOOD/BAD
EMPIRICAL
HEALTH

FEATURE
VECTOR

X

PRINCIPAL
HEALTH
METRIC

CAUSAL
FACTORS

TIME
SERIES

NEURAL NETWORK
MODEL

ADAPTATION
ALGORITHM

DIAGNOSTIC
ALGORITHM

MODEL
HEALTH

Ω c

NETWORK
STATE

DIAGNOSTIC
REPORT{ψ i }

FRONT END DATA PROCESSING SYSTEM MODEL

c

h

w∆ w

Elements of c = {ci} are chosen such that an arbitrarily complex function Ωc(X) can be constructed
that also produces the correct value Ωc = Ωh = Ω without examining h. Here, X is a feature vector
derived from raw c samples to facilitate this mapping from c to Ωc; its components are arbitrary functions
of the causal factors and typically include short-term statistics computed over the ci data. Thus, Ωc(X)
constitutes a statistical pattern classifier that distinguishes among health states based on its internal
model of the mapping from transformations of observable time series to the empirical health state.

In an operational environment, the DLA applies an analysis technique called discriminative diagnosis
to dissect this more complicated model, Ωc(c), in order to determine the cause of a transition from healthy
state Ω1 to anomalous state Ω0 whenever a fault is indicated by the simple model, Ωh(h). Results of this
mathematical postmortem are a ranked set of saliencies {Ψi} providing a quantitative measure of the
contribution from each changing component in X to the degraded performance. The final ranked list of
causal factors forms the output of the complete downlink analyzer system.

III. Signal Processing for Fault Detection and Feature Computation

A. Downlink Analyzer Signal Processing

The default signal processing applied to incoming DLA data is deliberately kept simple because the
nature of the input streams frequently confounds traditional signal-processing strategies. Among the
challenges accompanying DSN monitor data are unknown or time-varying latency, nonuniform sampling,
asynchronous sampling, widely varying average sample rates, missing samples, and samples that have
already been processed with unknown methods. This section describes some of the solutions that the
DLA applies to these problems.

Once the raw data in Fig. 1 are split into a principal health metric and all other causal factors, the
downlink analyzer front end passes each data stream through a user-controlled resampling process. The
resampler can leave the data unmodified or has the option to resample the streams on an individual basis.
Using this mechanism, time series can be synchronized with each other or to an independent source of
reference events (e.g., one sample every 5 s). Provisions exist for inserting (repeating) samples when the
underlying process does not emit them often enough and for recognizing the existence of a large gap. In
the DLA, the most common application of resampling forces all data streams to be synchronously (but
not necessarily uniformly) sampled. This resampling process is not required, but it does make the data
more pliable to analysis and presentation outside of the context of the DLA.

After resampling, the principal health metric is transformed into an empirical health state by compar-
ing it to a set of user-supplied thresholds. Threshold selection is usually based on empirical observations
and human experience with the target system. Any number of health states may be defined for a
principal health metric, but ultimately the empirical health state will be reduced to either GOOD or BAD.

3

This is the essence of the fault detection process in the DLA: it is accomplished solely by thresholding
the principal health metric.

Resampled causal factors usually do not themselves comprise the input to the model. Instead, the
DLA front end provides a mechanism for computing features based on resampled data. Support for
features derived from raw inputs allows engineers to incorporate some a priori knowledge about the
relationships in the system being modeled rather than forcing the neural network to allocate its time
and limited functional complexity toward discovering those relationships. In the DLA, features are user-
defined, arbitrarily complex functions of the instantaneous (last-known) values of the resampled data.
More importantly, features can also be derived from data statistics measured over a feature-specific,
user-selected temporal window. The enabling technology is the moving box-plot filter described below.

B. Moving Box-Plot Filters

The moving box-plot filter is a flexible tool for examining time series with samples that arrive at
irregular intervals or for combining and analyzing multiple series that are not synchronized. It is based
on the box plot, a nonparametric statistical summary first developed by Tukey [7]. Box plots in the DLA
follow the methodology described in [1], where the empirical distribution of a hypothetical sample of n
points, x = {x1, · · · , xn}, is succinctly summarized by nine quantities:

S0 = the minimum value in the sample set

S1 = the lower outer fence, defined as the larger of S0 and S3 − 3(S5 − S3)

S2 = the lower adjacent fence, defined as the larger of S0 and S3 − 1.5(S5 − S3)

S3 = the boundary between the first and second quartile

S4 = the boundary between the second and third quartile (i.e., the median value)

S5 = the boundary between the third and fourth quartile

S6 = the upper adjacent fence, defined as the lesser of S8 and S5 + 1.5(S5 − S3)

S7 = the upper outer fence, defined as the lesser of S8 and S5 + 3(S5 − S3)

S8 = the maximum value in the sample set

All nine statistics are trivial to compute once the samples have been sorted into ascending order; it is
only necessary to partition the sorted set into quartiles. Quantities S0 through S8 are illustrated for a
sample x ensemble in Fig. 2, which demonstrates how the box plot gives a useful synopsis of the statistical
properties of the sample. Specifically, the variance, skewness, and kurtosis of the empirical distribution
are clearly indicated by the height of the box, the position of the median within the box, and the relative
length of the “fences.”

With the addition of a moving window to select the sample set from a time series, the box plot changes
from a simple statistical summary to a nonlinear filter with multiple outputs. The resulting filter is a
particularly powerful tool for analyzing nonuniformly sampled time series since the observation window
is not constrained to be synchronized with any particular event or even to contain a fixed number of
samples.

In the DLA, empirical health state estimates and all feature vector components must be issued si-
multaneously even though the arrival times of samples from the various underlying time series are not

4

0 20 40 60
34.0

36.0

38.0

40.0

42.0

S0

S1

S3

S4

S2

S5

S6

S7 = S8

TOP 25%
(FOURTH QUARTILE)

BOTTOM 25%
(FIRST QUARTILE)

(THIRD QUARTILE)
(SECOND QUARTILE)

n

x
[n

]

Fig 2. A sample 61-point ensemble and its annotated box plot.

guaranteed. Typically, (X,Ωh) pairs are desired either at regular intervals or synchronously with the
arrival of new raw samples of the principal health metric. Moving box-plot filters provide a mechanism
for decoupling the health state estimate and feature vector emissions from the input sampling instants
without adding much complexity. Therefore, the DLA applies a moving box-plot filter to both principal
health metric and causal factor data. Health state estimates are always found by selecting the worst-case
value (S0 or S8) of the principal health metric from the observation window and comparing that value
to the predetermined health class thresholds. Feature vectors are arbitrary functions of the nine filter
outputs and the most recent instantaneous sample value. Note that it is not necessary to apply the same
moving box-plot filter uniformly everywhere; if observation window durations are tailored to the data,
they may vary across the different time series.

Moving box-plot filter technology contributes more to the downlink analyzer than just a convenient
solution to the challenges of coordinating asynchronous inputs from multiple sources. It also introduces
an element of time dependence into the model, which otherwise is completely feedback-free and lacking in
dynamic structure. Without these filters, the simple neural network presented in Section IV below would
describe a purely quasistatic mapping from c to Ωh and consequently would be incapable of incorporating
temporal dependencies among causal factors into its model since feature vectors could then be based only
on instantaneous samples. Application of the box-plot filter to extract worst-case values or other sample
statistics tends to smear events in the data such that temporal juxtapositions can be detected in addition
to simple coincidences. Adding some delay to the system enhances this effect by allowing the filters to
appear noncausal, extending the range of the observation window without considering events any more
temporally distant from the “current” time instant.

IV. System and Fault Modeling

A. Neural Networks as Nonparametric System Models

The mapping from X to Ωc is accomplished by a neural network [3,6]. Therefore, instead of resulting
from rigorous mathematical analysis of the underlying physical processes that produce the various {ci},
this Ωc(X) model evolves under the supervision of a robust adaptation algorithm while the network is
“trained” to classify empirical data correctly. By providing a general-purpose nonparametric framework
for characterizing the desired process, a connectionist model avoids some of the challenges associated

5

with identifying a suitable parametric model for the system. Of course, literally nonparametric models
are an illusion—the connection weights in the neural network, shown as w in Fig. 1 and fully described
below, clearly form a set of model parameters. However, the neural network paradigm represents a non-
parametric model in the same sense that classical (i.e., periodogram-based) spectral analysis techniques
yield nonparametric frequency-domain process models: the parameters are coefficients of basis functions
spanning a particular hypothesis class.

Connection weights in the network are determined by an adaptation algorithm that is essentially an
optimization procedure. In the downlink analyzer, the network is exposed to a training set of feature
vector/empirical health state pairs carefully selected to be representative of the underlying input space.
Network response to these training pairs is monitored as the adaptation procedure iteratively refines the
model until acceptable discrimination performance is demonstrated over the training ensemble. Ideally,
the training set provides uniform coverage of the multidimensional input space such that, if the network
successfully learns those patterns, it will exhibit reasonably good generalization performance when con-
fronted with novel feature vectors during its normal operating regime. Note that training occurs off-line,
orthogonal to any real-time operational use.

The remaining subsections in Section IV present the specific neural network used by the DLA, along
with the algorithms that mold the network into a robust statistical pattern classifier. Although the DLA
uses a fairly conventional neural network paradigm with standard processing units connected in a very
common topology, a complete (but terse) description is included here since some of the innovations and
variations are both subtle and important. The in-depth explanation also serves to introduce a common
notation that is employed for the remainder of this article.

B. Network Architecture and Computation

A neural network can be characterized as a directed graph containing N nodes, representing neurons or
processing units, indexed with integers on [1, N]. The first NI units are designated as inputs and may not
have edges entering them; these input nodes perform no computation, instead behaving as placeholders
for introducing external stimulus to the rest of the network. The remaining nodes are computational
units, with the final NO neurons designated as the observable network outputs. The simple network
shown in Fig. 3 illustrates the concepts in this section for N = 6, NI = 3, and NO = 1.

The graph and neural network architecture are described by an N × N interconnection matrix, I,
where the elements Ii,j of I are indicator variables denoting the presence or absence of a connection to
neuron i from neuron j:

Ii,j =
{ 1 if a connection exists to neuron i from neuron j

0 otherwise
(1)

Associated with each edge is a finite connection weight, wi,j . Elements of the N ×N weight matrix W
are zero wherever the corresponding element of I is zero. There are a total of Nw weights in the network,
with

Nw =
N∑
i=1

N∑
j=1

Ii,j (2)

Because the weight matrix is sparse, it is often convenient to refer instead to the weight vector, w,
containing the subset of elements of W that represents physical connections.

DLA models are restricted to the class of strictly feedforward multilayer networks. In these archi-
tectures, the sets of input and output neurons comprise the input and output layers, respectively. Any

6

1

2

3

4

5

6

INPUT LAYER HIDDEN LAYER OUTPUT LAYERINPUTS OUTPUT

W =

0000
000
000
000000
000000
000000

	x 1
	w 41

	w 64

	w 65

	w 53

	w
 43

	w 52

	w 42

	w 51

	x 2

	x 3

y 6 = F6 (x 6)

= F6(w 64 y 4 + w 65 y 5)

y5 = F5 (x 5)

= F5(w 51 y 1 + w 52 y 2 + w 53 y 3)

Fig. 3. A sample three-layer, three-input, one-output neural network.

w41 w42 w43
w51 w52 w53

w64 w65

intervening nodes are organized into zero or more discrete “hidden” layers. Connections are permitted
only between neurons in adjacent layers and must be oriented in the direction of computation (i.e., toward
the output layer). Thus, the graph is acyclic and I is strictly lower triangular:

Ii,j = 0, ∀i ≥ j (3)

Except for input units (which simply pass their inputs to their outputs unchanged), each neuron i com-
putes an output yi by transforming its net input xi through a nonlinear activation function Fi(·):

yi = Fi(xi) (4)

where xi is defined as the sum of neuron inputs weighted by the corresponding connection strengths:

xi =
∑

j:Ii,j=1

wi,jyj (5)

Normally, each (noninput) unit also possesses a bias weight wi,0 driven by a virtual input with fixed
stimulus y0 = 1; this can be accommodated in the above characterization by augmenting I and W with
another column.

Two types of activation functions are used by the DLA. All output units use the logistic sigmoid
function

F (x) =
(
1 + e−x

)−1 (6)

7

in order to constrain the output conveniently between zero and unity. Hidden units, however, have
activation functions that are hyperbolic tangents to retain support of bipolar-valued outputs on hidden
nodes. Both functions are common choices since they possess several desirable characteristics, viz.,
boundedness, continuous differentiability, and a “soft saturation” characteristic.

From Fig. 3 and the description above, it is obvious that the overall computation for a feedfor-
ward neural network maps length-NI input vectors X = (x1, · · · , xNI) to length-NO output vectors
Y = (yN−NO+1, · · · , yN), with computation proceeding layerwise from inputs to outputs.

C. Network Training

Because input/output relationships are often complex, the weights necessary to effect a desired map-
ping from input vectors to output vectors are not usually determined by explicit computation. The
DLA employs supervised learning, wherein appropriate weights are found by a feedback-driven iterative
optimization procedure. During repeated exposure to input vectors from a carefully selected training
set of ordered triplets {(X,Y,T)i}, the network uses an objective function to assess current network
performance as a function of the output vector Y and the corresponding target vector T. Changes in the
objective function drive weight adaptation until w reaches a local optimum in the weight space.

The optimization procedure used by the DLA is a gradient search [3]. If the objective function is to be
minimized, the search is a gradient descent; otherwise, it is a gradient ascent. The general optimization
strategy is simple: follow the local gradient, taking small steps in weight space until the gradient vanishes.
Thus, at time step (epoch) n, the adaptation proceeds according to

∆w(n) = ±α ∇wη(w
(n))

||∇wη(w(n))|| + β
(
∆w(n−1)

)
(7)

where η(·) is the objective function, w(n) is the current vector containing all Nw weights in the network,
∆w(n) is the latest weight update vector, α is a small positive learning rate constant controlling the
length of each step in the direction of the gradient, β is a momentum constant for accelerating the search
in regions with negligible higher-order derivatives, and the gradient vector components are given by

[
∇wη

(
w(n)

)]
i
=
∂η(w(n))
∂wi

, i = 1, 2, 3, · · · , Nw (8)

The sign of the first term in Eq. (7) is negative for gradient descent, and positive otherwise. In the DLA,
the gradient referenced in Eqs. (7) and (8) above is actually an average gradient accumulated over all
patterns (and all objective function scores) in the training set, but adaptation on a pattern-by-pattern
basis is also viable. With appropriate choices of α and β, this procedure converges to a locally optimum
solution for w.

D. Objective Functions

The most common objective function driving supervised learning is the mean-squared error (MSE)
criterion,

ηMSE(Y,T) =
1
NO

NO∑
i=1

(Yi − Ti)2 (9)

8

which is forced to a local minimum over the collection of training triplets {(X,Y,T)i} by the adaptation
procedure in order to make the ensemble of Y’s closely approximate the ensemble of target T’s. Intu-
itively, MSE is well suited to neural networks that approximate continuous functions of their input vector
components.

The DLA, however, performs a much simpler task: pattern classification. Here, each input vector is
associated with one of NO classes. The target vector components are binary indicator variables with

Ti =
{ 1 if X belongs to the ith class

0 otherwise
(10)

and the neuron with the largest output is interpreted as designating the class determined by the network.
Mean-squared error is not well suited to this situation, where the target functions are intrinsically discon-
tinuous; in fact, it can be shown that ηMSE sometimes increases with improved classification performance
[1].

The DLA adopts the classification figure of merit (CFM) objective function,

ηCFM (Y) =
{
σδ(Y(1) − Y(2)) if the classification is correct
σδ(Y(∗) − Y(1)) otherwise (11)

where σδ(·) is the synthetic CFM function with confidence parameter δ [1], Y(1) is the largest network
output, Y(2) is the second largest output, and Y(∗) denotes the output matching the correct classification.
The argument to σδ(·) is the discriminant differential, defined as the difference between the output from
the correct neuron and the largest other neuron output. It is positive when the classification is correct,
negative when incorrect, and generally bounded on [−1, +1] if outputs are limited to [0, 1].

Graphs of σδ(·) for various values of δ are available in Fig. 4, which shows the CFM as a contin-
uously differentiable sigmoidal approximation to a counting function. Hence, it has the property that
σδ(·) → 1 as the discriminant differential approaches δ from below and σδ(·) → 0 as the differential
becomes increasingly negative. Over the ensemble of training patterns, the average CFM attains its
maximum value of unity when all patterns are correctly classified with differentials exceeding the CFM
confidence parameter.

1.0

0.0
–1.0 0.0 1.0

x

 (x
)

 = 1
 = 0

Fig. 4. CFM objective function.

9

Learning driven by the CFM is differential learning, seeking only to ensure correct classification rather
than tackling the more complex task of mimicking a posteriori distribution functions the way MSE-based
probabilistic learning does. The less rigorous nature of CFM as a cost/benefit measurement is reflected in
Eq. (11), which depends only on two outputs rather than all the components of Y. For further discussion
of CFM and the relative merits of differential learning over probabilistic techniques, consult [1].

E. The Back Propagation Algorithm

Back propagation [3,6], or “reverse accumulation,” is a well-known procedure for computing the deriva-
tives of η with respect to neuron outputs or weights that are not directly associated with the output layer
of a feedforward network. Nearly all developments of the back propagation equations for multilayer net-
works stress the derivation of an error signal ∆j for each hidden neuron j, with ∆j being analogous to
the error Yi − Ti of each output unit. This approach deemphasizes the difference between output and
hidden units by synthesizing an equivalent “target value” for each hidden node. Although this unification
has some intuitive appeal, it is unnecessarily complicated as well as conceptually inappropriate for pure
classification tasks where distance-based metrics have little meaning.

More general back propagation equations that determine the gradient of η over the weight space or
node output space for feedforward multilayer networks can be obtained by inspection. The gradient
component for a network output unit i can be obtained directly from the objective function η(Y):

∂η

∂yi
=
∂η(Y)
∂yi

=
∂η(yN−NO+1, · · · , yN)

∂yi
, i = N −NO + 1, · · · , N (12)

For hidden- or input-layer nodes, examination of Fig. 3 reveals the general form of the desired derivative:

∂η

∂yi
=

∑
j:Ij,i=1

∂η

∂yj

∂yj
∂xj

∂xj
∂yi

=
∑

j:Ij,i=1

∂η

∂yj

[
F ′j(sj)

]
wj,i, i = 1, · · · , N −NO (13)

Thus, the gradient components for all neurons are made available by starting with an explicit computation
for the output layer, then propagating these values back through the network toward the input layer and
accumulating weighted contributions associated with each forward path. The gradient components with
respect to the weights are simply

∂η

∂wi,j
=

∂η

∂xi

∂xi
∂wi,j

=
∂η

∂xi
yj ∀i, j : Ii,j = 1 (14)

F. Differential Back Propagation

Combining CFM-based differential learning with back propagation produces several interesting conse-
quences.

First, the definition of ηCFM above in Eq. (11) guarantees that all derivatives of ηCFM are zero except
those associated with two of the network outputs. Subsequently, only weights contributing to these two
top-ranked output units can be modified by the learning rule in Eq. (7). One of these favored outputs
always corresponds to the correct class, while the other represents the highest-ranked class other than
the correct class. Intuitively, CFM-based back propagation attempts only to increase the output for the
correct class while simultaneously reducing the output for the most aggressive competing class without
deliberately affecting the discriminant functions for any of the remaining classes. With MSE-driven back
propagation, there are no restrictions on which weights may be changed; in general, all network weights

10

are subject to modification during any given training epoch as the update rule attempts to reduce the
error for all neurons. Of course, for the two-class DLA scenario, this distinction is not important.

Derivatives of ηCFM also vanish for discriminant differentials that equal or exceed the confidence
parameter, δ, associated with σδ(·). Accordingly, training samples that produce large enough positive
differentials no longer engender weight adaptation. This forms one justification for designating δ as a
“confidence”; once the network correctly classifies an exemplar with a differential exceeding δ, it can be
said to have learned that pattern with at least confidence δ. The training algorithm no longer needs to
allocate portions of network functional complexity toward improving discrimination performance on that
example and is instead free to concentrate on more difficult cases. Note, however, that such patterns may
still influence learning if the relevant differential is perturbed when weights are modified in response to
other training samples.

Also, derivatives of ηCFM with respect to a network output yi depend on another output yj in addition
to yi. This is in sharp contrast to most probabilistic supervised learning strategies, where each output
possesses an error derived from strictly local information. In the two-class problem posed by the downlink
analyzer, this results in antisymmetric weight updates—if the initial weights to the output layer are
all zero, they will always remain antisymmetric, rendering one output redundant and simplifying the
architecture without necessarily penalizing performance. Symmetry breaking, if desired, can be achieved
via random initial weights or a few epochs of probabilistic training.

Finally, a subtle aspect of ηCFM is found in the fact that the objective function score for a given training
example depends only on two outputs. More significantly, which two outputs are involved varies across
the training ensemble, i.e., different exemplars effectively have different objective functions. Furthermore,
the two specific outputs can change for a given training pattern as the network adapts. This phenomenon
is a further reflection of the nature of differential learning.

G. Complexity Reduction

Excessive functional complexity is known to result in overfitting of network weights during training,
leading to subsequent poor generalization performance on previously unseen input vectors. This is a
penalty for forsaking proper parametric models (specifically those with correct model order) and using
an all-encompassing, high-order neural network model in violation of Occam’s razor. The problem is
exacerbated when available training data are very sparse or otherwise not representative of the true
underlying spatial probability distribution of the inputs; in this case, novel feature vector inputs may elicit
surprising results if they excite degrees of freedom that were unconstrained during the learning phase.
Fortunately, several techniques are available for reducing neural network complexity and ameliorating the
effects of a surfeit of free parameters.

Methods of reducing network complexity in the DLA work by suppressing the effects of unimportant
parameters. The first technique, weight decay, causes all weights to decay exponentially in magnitude
during the training process. Weights to which the classification process is insensitive are permitted to
decay to zero, while those that are significant contributors are continuously reinforced by Eq. (7).

A second technique, the optimal brain damage (OBD) algorithm [4], uses the objective function to
determine the relative average significance of each weight to the classification of the training ensemble after
a locally optimum solution has been reached. Those weights that are deemed relatively unimportant are
removed and the network is retrained to reattain the optimum. The pruning procedure may be iteratively
applied until performance would degrade beyond an acceptable threshold. Complete details pertaining
to the application of the OBD in the context of the DLA are beyond the scope of this article but are
available.1

1 D. Watola, “Overview of Downlink Analyzer Neural Network Technology,” JPL Interoffice Memorandum 331.1-95-047
(internal document), Jet Propulsion Laboratory, Pasadena, California, November 20, 1995.

11

V. Fault Diagnosis

The details behind the derivation of the discriminative diagnosis (DD) algorithm and its CFM-
engendered differential-learning counterpart, differential discriminative diagnosis (DDD), are sufficiently
complex and interesting to deserve a complete treatment elsewhere [2].2 In this section, enough informa-
tion is presented to demonstrate how DDD meshes with the rest of the downlink analyzer.

For discriminative diagnosis to be applicable to a neural network, the classifier must be generated
by a supervised learning procedure where the model parameters are found by optimizing an empirical
cost/benefit function. Models produced for the DLA using back propagation to maximize the CFM statis-
tic clearly meet this condition, which DD and DDD require since they use the same cost function that
previously directed learning as the basis for the model analysis at the heart of discriminative fault diag-
nosis. During training, the cost/benefit metric indicated how well the classifier modeled the relationship
between the feature vector and the system health state. Afterward, it serves a complementary purpose,
reflecting how much the model health state deviates from some desired nominal state. Of course, this
interpretation of η is only meaningful when the classifier forms a robust model of the system; analysis of
an inaccurate model yields no useful information.

When the principal health metric announces the presence of an anomaly, i.e., Ωh1 = Ωc1 = Ω0 = BAD,
diagnosis proceeds by first selecting a previous classification with Ωh0 = Ωc0 = Ω1 = GOOD as a reference
point. Suitable references are those health metric/feature vector pairs from the recent past exhibiting
relatively high values of the discriminant differential; such cases represent classifications where the model
has high confidence in its own performance. DDD next constructs an approximate model of the system
by computing the Taylor series expansion of the objective function about the reference state:

η0(X) = η0(X0)+ (X−X0)T (∇Xη0(X0))+
1
2
(X−X0)T

(
∇2
Xη0(X0)

)
(X−X0)+O

(
||X−X0||3

)
(15)

where ∇X denotes the NI × 1 gradient vector of first derivatives with respect to the X components,
∇2
X refers to the corresponding NI × NI Hessian matrix of second derivatives, and the subscript in η0

reinforces the notion that all derivatives are evaluated at X = X0. To reduce computational complexity,
the algorithm truncates the model at the second order by omitting the final term in Eq. (15). Then,
by viewing X1 as resulting from an input perturbation ∆X = X1 −X0, a measure of how desirable or
undesirable X1 is with respect to X0 (in terms of producing the desired health state Ωh0 = GOOD) is
obtained from the resulting perturbation in the objective function:

∆η0(∆X = η0(X1)− η0(X0)

≈
(
∆XT

)
∇Xη0(X0) +

1
2

(
∆XT

)
∇2
Xη0(X0)∆X (16)

Here, the loss of equality results from truncation of the third- and higher-order terms in the expression
for ∆η0. Contributions of individual input perturbations are isolated from ∆η0 by decomposing Eq. (16)
as

∆η0(∆X) ≈
NI∑
i=1

∆Xi
∂η0(X0)
∂Xi

+
1
2
∆Xi

NI∑
j=1

∆Xj
∂2η0(X0)
∂Xi∂Xj

 (17)

2 D. Watola and J. B. Hampshire II, “Diagnosing and Correcting DSN Downlink Anomalies With a Robust Classifier,” to
appear in a future issue of The Telecommunications and Data Acquisition Progress Report, Jet Propulsion Laboratory,
Pasadena, California.

12

where the ith summand is defined as the saliency Ψi of the ith input. By finding and ranking the negative
saliencies produced using this procedure, DDD provides a prioritized checklist of sources of performance
degradation to human operators or troubleshooters.

Again, it is critical that the classifier be robust in the neighborhood surrounding (X0,Y0,Ωh0) for
the second-order approximation to be valid. Fortunately, the downlink analyzer provides two powerful
means for recognizing and rejecting spurious results. First, meaningless analyses can be avoided in regions
where the model is incorrect since the true health state (or at least a robust estimate of the most likely
actual health state) is always available in Ωh for comparison to the model health state. Whenever these
two disagree, the model is assumed faulty since the accuracy of the empirical health state is posited.
Also, each classification results in an observable discriminant differential; inputs eliciting a relatively low
differential (below some specified threshold) can be excluded from use as either X0 or X1 since the model
does not strongly associate the feature vector with its corresponding output class. Hence, in regions
where the classifier fails to discriminate adequately, spurious diagnostic results are avoided or ignored.
Inputs mapping to incorrect outputs can be recorded for further analysis or for future off-line training of
the network; thus, updating the model is possible when new failure modes manifest.

VI. An Example: KaBLE Link Diagnosis

This section demonstrates the end-to-end performance of the downlink analyzer using monitor data
taken from an actual deep-space downlink. The data originate in a series of recordings made in 1993 as part
of the Mars Observer Ka-Band Link Experiment (KaBLE) [5] and contain simultaneous measurements
from two different downlinks (the dual X-band (8.45-GHz) and Ka-band (32-GHz) carrier-only links
employed in the experiment), often with anomalous conditions appearing only in one downlink. Quantities
present in the recordings include carrier power-to-noise spectral density ratio (Pc/N0) estimates made by
coherent tone trackers, system noise temperature (SNT) measurements from the total-power radiometer
(TPR), pointing-error estimates from the antenna controller, and weather station data. Specifically, the
data available are X-band Pc/N0, X-band SNT, Ka-band Pc/N0, Ka-band SNT, azimuth, azimuth error,
elevation, elevation error, air temperature, water vapor density, wind direction, and wind speed.

In this example, a very simple fault in the DOY-17 X-band downlink is explored. Figure 5 shows a
portion of the available time series data for that date. X-band Pc/N0 is recognizable as the principal
health metric by the presence of a small color-coded graph immediately above the time series plot. This
extra graphic gives the empirical health state classification for the system based on the health metric;
from top to bottom, the four possible health states depicted are VERY GOOD, GOOD, BAD, and VERY BAD.
For this data set, the threshold between GOOD and BAD is located (somewhat arbitrarily) at 34 dB-Hz,
and there are no VERY GOOD classifications. To the right of each time series is a box plot showing all
outputs of the moving box-plot filter for the time instant selected by the vertical time series cursor. Also
visible on each box plot is a small square denoting the value of the time series at the cursor location,
which coincides with one end of the box-plot observation interval. The box plot for the principal health
metric is distinguished by a color-coded background marking the health class boundaries.

At least two qualitatively different types of failures are distinguishable from the principal health
metric display in Fig. 5. Between 0030 and 0100, there are many instances where Pc/N0 makes a brief
excursion slightly below acceptable limits, suggesting some intermittent or transient source of performance
degradation. From 0245 and 0340, the health state is uniformly VERY BAD with Pc/N0 measurements
consistently low enough to indicate a complete loss of signal. These two distinct behaviors characterize
nearly all faults observed in the KaBLE data captured during successful tracking of Mars Observer; only
the second type of anomaly is analyzed here because the origin of the fault is known with certainty for
DOY 17.

According to the operator’s log for DSS 13, the dichroic plate was removed at 0245, resulting in loss
of the X-band signal. A dramatic drop in detected Pc/N0 immediately followed as the tone tracker lost

13

01623_35.input.dla — /usr2/dwatola/DownlinkAnalyzer/KaBLE/TDA

Recompute

Detection Filter Order

0 50

lead count: 150 50

CAUSAL

NON-CAUSAL

lag count: 15

Cursor: 1996/17 03:26:06.00 = 103.92 Deg

-200.0

0.0

200.0

400.0

n=16(-15+0)
t=100.80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
From 1996/16 23:37:30.0 To 1996/17 05:16:51.6

Time (GMT)

R
el

at
iv

e
W

in
d

 D
ir

ec
ti

o
n

(D
eg

)

-200.0

0.0

200.0

400.0

Cursor: 1996/17 03:26:06.00 = 306.904999 K

0.0

200.0

400.0

n=16(-15+0)
t=100.80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
From 1996/16 23:37:30.0 To 1996/17 05:16:51.6

Time (GMT)

X
-b

an
d

 S
N

T

(K
)

0.0

200.0

400.0

Cursor: 1996/17 03:26:06.00 = -39.839565 dB-Hz

-60.0

-10.0

40.0

n=16(-15+0)
t=100.80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
From 1996/16 23:37:30.0 To 1996/17 05:16:51.6

Time (GMT)

X
-b

an
d

 P
c/

N
0

(d
B

-H
z)

-60.0

-10.0

40.0

Zoom 50.00%

Day of year
Time of day
Elapsed time
Mod Index
Time

Invisible Signals

X-band Pc/N0
X-band SNT
Relative Wind Di
Ka-band SNT
Ka-band Pc/N0
Azimuth
Azimuth Error
Elevation

Visible Signals

Cursor Control

Selection Control

Fig. 5. DLA graphical user interface display for DOYs 16–17 KaBLE data.

its lock on the carrier beacon. The change in principal health metric is visible in Fig. 5, which also shows
the X-band SNT registering at approximately room temperature for as long as the dichroic plate was
absent. As viewed by the DLA, a transition from the GOOD to BAD and VERY BAD health states occurred
almost immediately, because the mapping from h to Ωh is a simple thresholding operation. Thus, the
DLA performs the simplest part of its task, fault detection, with very little computational effort or
latency. Unfortunately, the neural network system model does not have access to Pc/N0 and therefore
must perceive the presence of a fault based on the excessive X-band SNT measurement, without explicit
knowledge that “high SNT is undesirable.” Similarly, the DDD algorithm must recognize an elevated
SNT as the proximal cause of the problem solely on the basis of its analysis of the neural network.

One possible neural network for use with the KaBLE data is shown in Fig. 6. This architecture, with
five hidden neurons, was experimentally determined to be the minimum capable of modeling some of the

14

MAXIMUM
X-BAND SNT

AZIMUTH

MAXIMUM
|AZIMUTH ERROR|

AZIMUTH ERROR
RANGE

ELEVATION

MAXIMUM
|ELEVATION ERROR|

ELEVATION ERROR
RANGE

WIND SPEED

WIND SPEED
RANGE

RELATIVE WIND
DIRECTION

WIND DIRECTION
RANGE

AIR
TEMPERATURE

WATER VAPOR
DENSITY

BAD

GOOD

Fig. 6. DLA neural network model for KaBLE.

15

more subtle wind-related phenomena present in the KaBLE data. The thirteen inputs (features) were also
selected after some experimentation. Note that most of the features are not just items from the original
time series. Some are transformations of an underlying KaBLE time series, e.g., “maximum |azimuth
error|” is the largest absolute value of “azimuth error” found within the observation window. Others are
the result of more sophisticated manipulations of the input data; for example, “relative wind direction” is
a function of both the “wind direction” input and absolute “azimuth,” while “wind direction range” is a
short-term statistic computed as the difference between the extreme values of samples of “wind direction”
over a 150-s observation window. Although none of these features other than “maximum X-band SNT”
are important to the example under consideration, they demonstrate the freedom granted by the DLA
software in choosing feature vectors to reduce the burden on the network in its attempt to build a system
model.

Figure 7 shows the complete Pc/N0 history for the DOY-17 track. Highlighted regions mark the
620 data points used to generate a training ensemble for the neural network in Fig. 6. This training
set includes samples from both types of faults as well as a few areas where conditions appear nominal.
Ordinarily, such a sparse training set would be much too small to engender a useful model of the downlink.
However, it is sufficient for this limited demonstration since the resulting neural network is only applied
to the remaining DOY-17 data, which do not possess much variety beyond that embodied in the selected
samples. The training set deliberately excludes the region of interest near 0245 in the transition region
where Pc/N0 first slips into the BAD class. Instead, it only contains examples of VERY BAD health metric
values.

After training this network with the feature vector/health state pairs comprising the DOY-17 training
set, the result is an acceptable model for the system (for DOY 17 only) with an 11.1-percent false alarm
rate and a 14.4-percent missed detection rate over the 7748 points in the DOY-17 data. Although these
performance statistics do not seem very impressive, it should be noted that they are not good indicators
of DLA performance in a practical sense. For example, most of the missed faults and many of the false
alarms occur while the system is transitioning between states; this is inevitable since the model cannot
capture all of the subtleties of the time-domain behavior of the raw data. Of the eight short faults between
0030 and 0100, only two completely escape detection by the neural network and are thus not subject to

0 1 2 3 4 5 6 7 8 9 10 11
From 1996/16 23:37:30.0 To 1996/17 10:56:13.2

TIME, GMT

X
-B

A
N

D
 P

c
/N

0,
 d

B
-H

z

–60.0

–40.0

–20.0

0.0

20.0

40.0

Fig. 7. Complete health metric history for DOYs 16–17 showing training set selection.

16

DLA diagnosis. The remaining six anomalies can still be analyzed using DDD even though the model
produces occasional incorrect classifications in their vicinity. Furthermore, those faults not found by the
model are still flagged by the DLA, so the problem does not escape detection entirely.

Also, nearly all of the false alarms occur between 0400 and 0530, the windiest 1.5 hours of the pass.
Because the only gusty winds in the training set are strongly correlated with anomalies, the model
incorrectly generalizes in this region and frequently produces BAD classifications even though the downlink
is healthy. Thus, the false alarm performance would be greatly improved by the addition of a few minutes
of new training data from this windy region.

To apply the diagnostic procedure to the fault event near time 0245, it is necessary to choose two
classifications: one with a BAD health state to be investigated and another having the desired GOOD
health state for use as a reference. Figure 8 shows the two cases selected for this example. Here, the
feature vector 2090 produces the very first BAD output associated with the removal of the dichroic plate.
Classification 2088 is a suitable reference point since it is a recent previous input that gave a correct GOOD
classification with a relatively high discriminant differential, meaning that the output for the GOOD class
responds much more strongly to the input features than that of the BAD class. On the other hand, 2089
is not a viable reference since it lies in the transition region where the model is not robust.

Differential discriminative diagnosis on these two selections yields the saliencies shown in Fig. 9. Note
that the change in “maximum X-band SNT” is flagged as the most significant contributor to the perfor-
mance degradation, and that the saliencies for most of the other input perturbations are not within an
order of magnitude of the saliency for SNT. The selection of “wind speed range” as a close competitor
to SNT is due to a coincidental change in wind characteristics; as described above, the training set is
too sparse for the neural network to discover that not all wind-related events result in faults. A stronger
cue that the diagnosis may be questionable is the presence of a positive saliency (for the “wind speed”
feature) of the same order of magnitude as the largest negative saliency—a sign that the second-order

Input Vector History and Summary

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

1996/017 02:43:55.171

1996/017 02:44:02.429

1996/017 02:44:05.971

1996/017 02:44:09.600

1996/017 02:44:13.229

1996/017 02:44:20.400

1996/017 02:44:27.571

1996/017 02:44:31.200

1996/017 02:44:34.829

1996/017 02:44:38.371

1996/017 02:44:45.629

1996/017 02:44:52.800

1996/017 02:44:56.429

Good

Good

Good

Good

Good

Good

Bad

Bad

Bad

Bad

Bad

Bad

Bad

Good

Good

Good

Good

Good

Bad

Bad

Bad

Bad

Bad

Bad

Bad

Bad

0.810555

0.810445

0.809541

0.801836

0.792442

-0.134868

0.13455

0.134734

0.052117

0.044168

0.044355

0.045054

0.045753

Timetag Health Model Differential

7749Total Input Vectors: R$ F$>F >R

REFERENCE STATE

ANOMALOUS STATE

Fig. 8. DLA classifications at anomaly onset.

17

Saliency Rankings

1

2

3

4

5

6

7

8

9

10

11

12

13

Maximum X-Band SNT

Wind Speed Range

Wind Direction Range

Relative Wind Direction

Elevation

Maximum |Elevation Error|

Maximum |Azimuth Error|

Elevation Error Range

Air Temperature

Azimuth

Azimuth Error Range

Water Vapor Density

Wind Speed

-0.45085

-0.254214

-0.023772

-0.020035

-0.00087

 0

 0

 0

 1.46733e-05

 0.000276

 0.003374

 0.010597

 0.182759

Rank Feature Saliency

1996/017 02:44:27.571Current Timetag:

Reference Timetag: 1996/017 02:44:13.229

Fig. 9. Saliencies computed using differential discriminative diagnosis for Fig. 8.

approximation is not very good for the selected points. In spite of these problems, DDD successfully
isolates the large change in the X-band SNT as the source of the problem. Selecting a faulty point with a
higher discriminant differential (e.g., >0.6 instead of the 0.13 in this example) for analysis nearly always
gives unambiguously correct results.

This example demonstrates recognition and analysis of a fault with a very obvious cause; even without
the station log, it is clear that SNT is the culprit. Armed with the DDD procedure, the downlink
analyzer is capable of detecting and diagnosing much more subtle downlink failures. KaBLE data contain
numerous events where Pc/N0 drops below acceptable limits without any clear reason. An early version of
the downlink analyzer traced some of these lost signal events to rapid wind shifts at low wind velocity. JPL
engineers reviewing 1964 wind-tunnel test results for DSS 13 confirmed that rapidly shifting low-velocity
winds can induce underdamped oscillations, placing mechanical loads on the pointing apparatus large
enough to cause downlink failure. This represents the first direct evidence that the downlink analyzer
can discover heretofore unknown downlink failure modes and, in effect, teach human design engineers,
scientists, and operators what it has learned. Full details of this diagnosis will be available in an upcoming
article that examines discriminative diagnosis and its application in much more detail.3

3 Ibid.

18

VII. Summary

The downlink analyzer is a versatile system for performing fault detection and diagnosis in DSN
downlink systems or, indeed, any system that fits the principal health metric/causal factor paradigm.
One reason it is such a flexible tool is its ability to deal effectively with multiple unsynchronized data
sources, including the facility to perform joint computations on samples that arrive at arbitrary intervals.
This ability is largely due to the use of the moving box-plot filter in both fault detection and feature vector
computation. Other technical innovations powering the downlink analyzer are the use of a nonparametric
statistical pattern classifier for learning DSN causal relationships, the application of differential learning
to achieve minimum probability of error discrimination with minimum complexity, and the discriminative
diagnosis procedure for locating and ranking likely causes of anomalies based on mathematical analysis
of the empirically derived neural network model. The current DLA implementation is a significant step
toward meeting the primary goals of providing automated detection and diagnosis of faults, learning novel
failure modes without human intervention or guidance, and providing useful tools for fault-related data
analysis.

References

[1] J. B. Hampshire II, A Differential Theory of Learning for Efficient Statisti-
cal Pattern Recognition, Ph.D. Thesis, Carnegie–Mellon University, Department
of Electrical and Computer Engineering, Pittsburgh, Pennsylvania, September
1993.

[2] J. B. Hampshire II and D. Watola, “Diagnosing and Correcting System Anoma-
lies With a Robust Classifier,” IEEE Proceedings of the 1996 International Con-
ference on Acoustics, Speech, and Signal Processing, Atlanta, Georgia, pp. 3507–
3509, May 1996.

[3] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural
Computation, Redwood City, California: Addison-Wesley, 1991.

[4] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” Advances in
Neural Information Processing Systems 2, edited by D. S. Touretzky, San Mateo,
California: Morgan Kaufmann, pp. 598–605, 1990.

[5] T. A. Rebold, A. Kwok, G. E. Wood, and S. Butman, “The Mars Observer
Ka-Band Link Experiment,” The Telecommunications and Data Acquisition
Progress Report 42-117, January–March 1994, Jet Propulsion Laboratory, Pasa-
dena, California, pp. 250–282, May 15, 1994.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Repre-
sentations by Error Propagation,” Parallel Distributed Processing, vol. 1, Cam-
bridge, Massachusetts: MIT Press, pp. 318–362, 1986.

[7] J. W. Tukey, Exploratory Data Analysis, Reading, Massachusetts: Addison Wes-
ley, 1977.

19

